If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-32x-165=0
a = 8; b = -32; c = -165;
Δ = b2-4ac
Δ = -322-4·8·(-165)
Δ = 6304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6304}=\sqrt{16*394}=\sqrt{16}*\sqrt{394}=4\sqrt{394}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-4\sqrt{394}}{2*8}=\frac{32-4\sqrt{394}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+4\sqrt{394}}{2*8}=\frac{32+4\sqrt{394}}{16} $
| -10+8x=2-12x | | -85=6(n-6)-1 | | Y=3/8x+5 | | 8(x-5)=8+40 | | 38=8x-10+5x-4 | | h^2-6=18 | | 6/8y-5y=-2 | | 1/4x-1/4=1/8x | | -8a=24 | | (8x+16)=(84) | | 50w=1,050 | | 16x^2-64x-330=0 | | 10=2x^2-x | | 10=-1/2*(1)+b | | -4=|x-3| | | 8x+11x=14 | | 4y-3.2×=6 | | -1/7w-9/5=-3/2 | | (3)^x=(x)^2 | | 10=-(1/2)*(1)+b | | -16-7(a+3)=23-2a | | 8m^2=32 | | 0=4x^2-24x-30 | | (x/7)+(x/8)=(9/7) | | X-2/4=5/4x-x | | 6x-4/2=(3x-3) | | 6-8b=-5b-4b | | 1/2(4x-6)=1/4(12x-8) | | 3p+3p=10+4p | | |2/3t-4|=5 | | 3k^2+7k^2=0 | | -4(x+3)-44=5-33 |